Abstract
ABSTRACTThis work presents a Computational Fluid Dynamics (CFD) study of the non-premixed combustion of natural gas with air in an axisymmetric cylindrical chamber, focusing on the contribution of the chemical reaction modeling on the temperature and the chemical species concentration fields. Simulations are based on the solution of mass, momentum, energy and chemical species conservation equations. Thermal radiation heat transfer in the combustion chamber is computed through the Discrete Transfer Radiation Method, and the Weighted-Sum-of-Gray-Gases model solves the dependence of gas absorption coefficient on the wavelength. Turbulence is modeled by the standard k-ε model. Regarding the combustion modeling, it is performed a comparison of solutions obtained with the combined Eddy Break-Up/Arrhenius (EBU/Arrhenius) and the Steady Laminar Diffusion Flamelet (SLDF) models. The finite volume method is employed to treat the differential equations. Among other results, the solution of the governing equations allows for the determination of the region where combustion takes place, the distribution of the chemical species and the velocity fields. The numerical results are compared to experimental measurements, showing varied agreements. Results indicate that, in this case, the EBU/Arrhenius model can predict the flame temperature and the concentration of the most important species with better accuracy than the more sophisticated SLDF model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.