Abstract

The presence of antibiotic residues in water is linked to the emergence of antibiotic resistance globally and necessitates novel decontamination strategies to minimize antibiotic residue exposure in both the environment and food. A holistic assessment of cold atmospheric pressure plasma technology (CAPP) for β-lactam antibiotic residue removal is described in this study. CAPP operating parameters including plasma jet voltage, gas composition and treatment time were optimized, with highest β-lactam degradation efficiencies obtained for a helium jet operated at 6 kV. Main by-products detected indicate pH-driven peroxidation as a main mechanism of CAPP-induced decomposition of β-lactams. No in vitro hepatocytotoxicity was observed in HepG2 cells following exposure to treated samples, and E. coli exposed to CAPP-degraded β-lactams did not exhibit resistance development. In surface water, over 50% decrease in antibiotic levels was achieved after only 5 min of treatment. However, high dependence of treatment efficiency on residue concentration, pH and presence of polar macromolecules was observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call