Abstract
Many studies have examined the preclinical efficacy of Mg2+ therapy in models of traumatic brain injury. However, more of these studies have examined sensorimotor and motor performance than cognitive performance following injury. The present paper reviews the use of Mg2+ therapy to facilitate cognitive recovery in several models of cortical injury in the rodent. The first study examined the ability of daily injections of MgCl2 (1 or 2 mmol) to impair acquisition of a reference memory task in the Morris Water Maze. Additional studies examined the ability of MgCl2 to improve cognitive function following bilateral anterior medial cortex ablations, bilateral frontal cortex contusions, and unilateral frontal contusions. The results from these studies indicate that MgCl2 therapy is biologically active and readily crosses the blood-brain barrier because daily injections of MgCl2 impaired learning of a reference memory task in intact rats. Mg2+ therapy for brain injury revealed that administration of post-injury MgCl2 effectively improved recovery of cognitive deficits following injury. These results suggest that Mg2+ therapy is effective in facilitating cognitive recovery of function following brain injury; however, there are task and dose-dependent aspects to this recovery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.