Abstract

In order to investigate protein function in rat primary cortical neuronal cultures, we modified an adenoviral vector expression system and assessed the strength and specificity of the cytomegalovirus (CMV), rous sarcoma virus (RSV), and rat and human synapsin 1 (SYN1) promoters to drive DsRed-X expression. We also incorporated the woodchuck post-transcriptional regulatory element (WPRE) and a CMV promoter-enhanced green fluorescent protein (EGFP) reporter cassette. We observed that the RSV promoter activity was strong in neurons and moderate in astrocytes, while the CMV promoter activity was weak-to-moderate in neurons and very strong in astrocytes. The rat and human SYN1 promoters exhibited similar but weak activity in neurons, despite inclusion of the WPRE. We confirmed that the WPRE enhanced RSV promoter-mediated DsRed-X expression in a time-dependent fashion. Interestingly, we observed very weak SYN1-mediated DsRed-X expression in astrocytes and HEK293 cells suggesting incomplete neuronal-restrictive behavior for this promoter. Finally, using our adenoviral expression system, we demonstrated that RSV promoter-mediated Bcl-X L overexpression attenuated neuronal death caused by in vitro ischemia and oxidative stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.