Abstract

Dengue fever is an acute viral infection transmitted by arthropods but may evolve to severe clinical manifestations. Descriptions of the role of circulating immune modulators such as cytokines or chemokines in dengue immunopathogenesis have largely relied on data from South-east Asia and America, while India is poorly represented. This study characterizes dengue cases from West Bengal, eastern India, with respect to clinical profile and pro-inflammatory and inflammatory cytokines. We evaluated the profile of both inflammatory and anti-inflammatory cytokines (IFNγ, IL6, IL10, IL12 and TGFβ) and chemokines (IL8, CXCL9, CXCL10 and RANTES) in 100 hospitalized NS1/IgM confirmed Dengue patients during the epidemic in West Bengal during 2017. Additionally, all necessary blood investigations of the study subjects were performed. The patients mostly hailed from Kolkata, followed by Nadia, 24 Parganas (North and South), Murshidabad and Midnapore. The most common presentations apart from fever and bodyache were gastrointestinal symptoms. An elevated levels of cytokines IL6 and IL10 chemokine IL8 and CXCL10 along with decreased RANTES were found in the patients with Severe Dengue as compared to mild forms of dengue (p < 0.0001) during 3–6 days of infections. A significant association was obtained between most of cytokine and increased SGPT, haematocrit, albumin and decreased platelet count, whereas a negative correlation with the level of RANTES to haematocrit (r=-0.220 with p = 0.029) was found in severe dengue cases with altered liver function parameters. This is the first study demonstrating cytokine and chemokine association with dengue severity from the eastern part of India. Taken together, this study demonstrated that the altered expression levels of IL6, IL10, IL8, CXCL10 and RANTES had significant associations with dengue severity parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.