Abstract

Cerebral spinal fluid (CSF) is a promising biospecimen for the detection of central nervous system biomarkers to monitor therapeutic efficacy at the cellular level in neurological diseases. Spinal muscular atrophy (SMA) patients receiving intrathecal antisense oligonucleotide (nusinersen) therapy tend to show improved motor function, but the treatment effect on cellular health remains unknown. The objective of this study was to assess the potential of extracellular RNAs and microRNAs in SMA patient CSF as indicators of neuron and glial health following nusinersen treatment. Extracellular RNA analysis of CSF samples revealed ongoing cellular stress related to inflammation and glial differentiation, even after treatment administration. Downregulated microRNA expression associated with SMA-specific or general motor neuron dysfunction in animal and cellular models, tended to increase in nusinersen-treated patient CSF samples and correlated with SMA Type 1 and 2 motor functioning improvements. However, miR-146a, known to be upregulated in SMA-induced pluripotent stem cell (iPSC)-derived astrocytes, showed increased expression in nusinersen-treated CSF samples. We then used mRNA sequencing and multi-electrode arrays to assess the transcriptional and functional effects of miR-146a on healthy and SMA iPSC-derived motor neurons. miR-146a treatment on iPSC-derived motor neurons led to a downregulation of extracellular matrix genes associated with synaptic perineuronal net and alterations in spontaneous electrophysiological activity. Altogether, this study suggests that extracellular RNAs and microRNAs may serve as useful biomarkers to monitor cellular health during nusinersen treatment. Moreover, these data highlight the importance of addressing astrocyte health and response to nusinersen in SMA pathogenesis and treatment strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.