Abstract

BackgroundThe aim was to compare the repeatability, reproducibility and inherent precision of ultrasound pachymetry (USP), noncontact specular microscopy (SP-2000P) and the Confoscan 4 confocal microscope (z-ring CS4) in measuring endothelial cell density (ECD), coefficient of variation of cell size (CV), and central corneal thickness (CCT) in normal eyes.MethodsIn this prospective study, one eye was selected from each of 30 subjects for the measurements of ECD, CV and CCT, which were taken by two observers. Results were analyzed statistically by repeated-measures analysis of variance (ANOVA) for intra-observer repeatability, inter-observer reproducibility, unpaired t-test, paired t-test, and Bland–Altman analyses to determine limits of agreement (LOA) between the three instruments.ResultsMean ECD, measured by SP-2000P and z-ring CS4, were 3115.50 ± 279.70 cells/mm2 and 3167.50 ± 264.75 cells/mm2, respectively (observer 1), and 3192.63 ± 249.42 cells/mm2 (z-ring, observer 2). Mean CV measurements were 27.12 ± 2.51 and 27.10 ± 2.41 (SP-2000P and z-ring CS4, respectively; observer 1), and 27.17 ± 2.25 (z-ring, observer 2). Mean CCT values were 555.11 ± 35.83 μm (USP), 535.82 ± 41.10 μm (SP-2000P) and 552.57 ± 36.83 μm (z-ring CS4), and 554.97 ± 36.34 μm (z-ring CS4, observer 2). However, pairwise tests in all cases there was good repeatability and reproducibility as shown by inter-observer and intra-observer analysis of variance for each of the instruments.ConclusionsThe SP-2000P and the z-ring CS4 can be used interchangeably to measure ECD and CV. For CCT, the sample size was too small to test for differences of the CCT measurements between the three instruments.

Highlights

  • The aim was to compare the repeatability, reproducibility and inherent precision of ultrasound pachymetry (USP), noncontact specular microscopy (SP-2000P) and the Confoscan 4 confocal microscope (z-ring CS4) in measuring endothelial cell density (ECD), coefficient of variation of cell size (CV), and central corneal thickness (CCT) in normal eyes

  • Intra-observer repeatability, inter-observer reproducibility, and agreement between instruments in measuring ECD The intra-observer repeatability analyses for the measurement of ECD using SP-2000P and z-ring CS4 were not statistically significant (ANOVA ≥ 0.05 and p = 0.13, observers 1 and 2, respectively), indicating a high repeatability of ECD measured with the SP-2000P and z-ring CS4

  • The post hoc power result indicates that the CCT measurements in the current study has only 40% power (i.e. 60% type II error) to detect a difference in the present observed means (USP = 555.11, SP-2000P =535.82, z-ring CS4 = 552.57). This demonstrate that the sample size was too small to test for differences of the CCT measurements between the three instruments

Read more

Summary

Introduction

The aim was to compare the repeatability, reproducibility and inherent precision of ultrasound pachymetry (USP), noncontact specular microscopy (SP-2000P) and the Confoscan 4 confocal microscope (z-ring CS4) in measuring endothelial cell density (ECD), coefficient of variation of cell size (CV), and central corneal thickness (CCT) in normal eyes. Key corneal endothelial morphology parameters include the endothelial cell density (ECD), and the coefficient of variation of cell area (CV/polymegethism) Both of these measures can be affected by a broad. Several automated instruments have been introduced to objectively evaluate corneal endothelial morphology and CCT These include the Topcon Optical SP-2000P non-contact specular microscope (SP-2000P) [15,16], the Confoscan 4 confocal microscope (CS4) [17,18], and a non-contact specular microscopy system, Topcon SP-3000 [18,19]. Several newer instruments have become available to measure the CCT such as the VisanteTM anterior segment optical coherence tomography (Visante OCT) [24], CS4 [14], ultrasound biomicroscopy (UBM) [25], and SP-2000P [15]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call