Abstract

Cell wall-degrading enzymes' activities under infrared treatment are vital for peeling; it is critical to elucidate the mechanisms of the novel infrared peeling in relation to its impact on cell wall-degrading enzymes. In this study, the activities, and gene expressions of eight degrading enzymes closely related to pectin, cellulose and hemicellulose were determined. The most influential enzyme was selected from them, and then the mechanism of its changes was revealed by molecular dynamics simulation and molecular docking. The results demonstrated that infrared had the most significant effect on β-glucosidase among the tested enzymes (increased activity and up-regulated gene expression of 195.65 % and 7.08, respectively). It is suggested infrared crucially promotes cell wall degradation by affecting β-glucosidase. After infrared treatment, β-glucosidase's structure moderately transformed to a more open one and became flexible, increasing the affinity between β-glucosidase and substrate (increasing 75 % H-bonds and shortening 15.89 % average length), thereby improving β-glucosidase's activity. It contributed to cell wall degradation. The conclusion is that the effect of infrared on the activity, gene expression and molecular structure of β-glucosidase causes damage to the peel, thus broadening the applicability of the new infrared dry-peeling technique, which has the potential to replace traditional wet-peeling methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call