Abstract

Carbon storage is one of the key factors determining the global carbon balance in the terrestrial ecosystems. Predicting future changes in carbon storage is significant for regional sustainable development in the background of the "dual carbon" objective. This study which coupled the InVEST model and the PLUS model and is based on land use in different future scenarios evaluated the evolution characterization of terrestrial carbon storage in Jilin Province from 2000 to 2040 and explored the impact of related factors on it. The results show that: (1) from 2000 to 2020, the area of cultivated land and built-up areas increased continuously in Jilin Province, while the area of forest land, grassland, and wetland decreased with time; the ecological land has been restored to a certain degree. (2) Due to the continuous reduction in ecological land, the overall carbon storage in Jilin Province from 2000 to 2020 showed a downward trend, with a total reduction of 30.3 Tg, and the carbon storage in the western part of Jilin Province changed significantly. The SSP2-RCP4.5 scenario shows a minimum value of carbon storage in 2030 and a small increase in 2040; the SSP1-RCP2.6 scenario shows an increasing trend in carbon storage from 2020 to 2040; the area of built-up areas and cultivated land increases and the loss in carbon storage is more serious under the SSP5-RCP8.5 scenario. (3) On the whole, with the increase in elevation and slope, the carbon storage showed a trend of increasing first and then decreasing, and the carbon storage of shady and semi-shady slopes was higher than that of sunny and semi-sunny slopes; forest land and cultivated land were the keys to carbon storage changes in Jilin Province.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call