Abstract

Abstract Around the world, it is growing harder to provide clean and safe drinking water. In wastewater treatment, sensors are employed, and the Internet of Things (IoT) is used to transmit data. Chemical oxygen demand (COD), biochemical demand (BOD), total nitrogen (T-N), total suspended solids (TSS), and phosphorous (T-P) components all contribute to eutrophication, which must be avoided. The wastewater sector has lately made efforts to become carbon neutral; however, the environmental impact and the road to carbon neutrality have received very little attention. The challenges are caused by poor prediction. This research proposes deep learning modified neural networks (DLMNN) with Binary Spotted Hyena Optimizer (BSHO) for modeling and calculations to address this challenge. All efforts for resource recovery, water reuse, and energy recovery partially attain this objective. In contrast to previous modeling techniques, the DLMNN-training BSHOs and validation demonstrated outstanding accuracy shown by the model's high coefficient (R2) for both training and testing. Also covered are recent developments and problems with nanomaterials made from sustainable carbon and graphene quantum dots, as well as their uses in the treatment and purification of wastewater. The proposed model DLMNN-BSHO achieved 95.936% precision, 95.326% recall, 93.747% F-score, and 99.637% accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.