Abstract

Stomatal conductance (g) is a key parameter in controlling energy and water exchanges between canopy and the atmosphere. Stomatal conductance models proposed by Ball, Woodrow and Berry (BWB) and Leuning have been increasingly used in land surface schemes. In a recent study, a new diagnostic index was developed by Wang et al. to examine the response of g to humidity and new models were proposed to resolve problems identified in the BWB and Leuning models. This approach is theoretically sound, but relies on canopy latent heat and CO2 fluxes and environmental variables at the leaf surface which are not available at most eddy correlation (EC) observation sites. In this study, we tested the diagnostic index by empirically correcting EC measurements to canopy-level fluxes and by replacing leaf surface variables by their corresponding ambient air variables, and re-examined the stomatal conductance models of BWB, Leuning, and Wang et al. We found that the impact of the above modifications on the evaluation of g–humidity relationships is very small. This study provides a practical approach to investigate the stomatal response to humidity using routine EC measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.