Abstract

The paradigm of sine-wave electrical stimuli has been used for sensory neurological assessment in humans. In the present study, we applied the paradigm to the dog for the quantitative assessment of sensory function. Sine-wave electrical current stimuli at frequencies of 2000, 250, and 5 Hz were delivered to bipolar electrodes attached to the skin surface of the hind paws. The stimulation intensity was gradually increased, and the minimum intensity required to elicit the lifting behavior in the stimulated paw was determined as current threshold (CT) for each of the three frequencies. Dogs consistently showed the lifting behavior at CTs without showing aversive behaviors such as vocalization and wriggling. The baseline CTs (mean ± SEM, n = 12) were 4430 ± 110 μA for CT2000, 2215 ± 173 μA for CT250, and 2305 ± 152 μA for CT5. The CTs immediately increased after bolus intravenous injection of fentanyl at 10 μg/kg, although the significant increase disappeared within 1 h. The time course for the CTs was parallel to that of plasma fentanyl concentration. In conclusion, the present study applied the paradigm of transcutaneous sine-wave electrical stimuli to the dog, and used the hind paw lifting as endpoint behavior. This paradigm is simple, non-invasive, useful in the assessment of sensory function, and can be adapted to investigate the pharmacokinetics/pharmacodynamics relation of drugs. Further studies are needed to give the conclusive interpretation of the endpoint behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.