Abstract

In this study, using computational biomechanics models, we investigated influence of the skull-brain interface modeling approach and the material property of cerebrum on the kinetic, kinematic and injury outputs. Live animal head impact tests of different severities were reconstructed in finite element simulations and DAI and ASDH injury results were compared. We used the head/brain models of Total HUman Model for Safety (THUMS) and Global Human Body Models Consortium (GHBMC), which had been validated under several loading conditions. Four modeling approaches of the skull-brain interface in the head/brain models were evaluated. They were the original models from THUMS and GHBMC, the THUMS model with skull-brain interface changed to sliding contact, and the THUMS model with increased shear modulus of cerebrum, respectively. The results have shown that the definition of skull-brain interface would significantly influence the magnitude and distribution of the load transmitted to the brain. With sliding brain-skull interface, the brain had lower maximum principal stress compared to that with strong connected interface, while the maximum principal strain slightly increased. In addition, greater shear modulus resulted in slightly higher the maximum principal stress and significantly lower the maximum principal strain. This study has revealed that using models with different modeling approaches, the same value of injury metric may correspond to different injury severity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call