Abstract
The objective of the present study was to investigate the effect of a fabricated combination of poly-ɛ-caprolactone (PCL)-biphasic calcium phosphate (BCP) with the modified melt stretching and multilayer deposition (mMSMD) technique on human dental pulp stem cell (hDPSC) differentiation to be osteogenic like cells for bone regeneration of calvarial defects in rabbit models. hDPSCs extracted from human third molars were seeded onto mMSMD PCL-BCP scaffolds and the osteogenic gene expression was tested prior to implantation in vivo. Two standardized 11 mm in diameter circular calvarial defects were created in 18 adult male New Zealand white rabbits. The rabbits were divided into 4 groups: (1) hDPSCs seeded in mMSMD PCL-BCP scaffolds; (2) mMSMD PCL-BCP scaffolds alone, (3) empty defects and (4) autogenous bone (n = 3 site/time point/groups). After two, four and eight weeks after the operation, the specimens were harvested for micro-CT including histological and histomorphometric analysis. The explicit results presented an interesting view of the bioengineered constructs of hDPSCs in PCL-BCP scaffolds that increased the newly formed bone compared to the empty defect and scaffold alone groups. The results demonstrated that hDPSCs combined with mMSMD PCL-BCP scaffolds may be an augmentation material for bony defect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Materials Science: Materials in Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.