Abstract

Polypeptides based on the alternating hydrophobic and cross-linking domain structure of human elastin are capable of undergoing self-assembly to produce polymeric matrices with unique biological and mechanical properties. Here, we test the initial feasibility of using a genipin cross-linked elastin-based material as an acellular plug in the treatment of an osteochondral defect in the rabbit knee. Full-thickness defects in the weight-bearing surface of the medial femoral condyle in 18 New Zealand White rabbits were surgically produced and press fitted with cylindrical pads composed of genipin cross-linked elastin-like polypeptides, with identical wounds in the opposite knee left untreated as controls. The biocompatibility of the material, overall wound healing and regeneration of subchondral tissue was assessed at 2, 4 and 6 weeks by histological evaluation, synovial fluid analysis and microcomputerized tomography scanning. Histological analysis revealed the regeneration of subchondral bone at the periphery of the material, with evidence of hyaline-like overgrowth across the apical surface in 11/16 cases. Pads developed tight contacts with host tissue and appeared completely biocompatible, with no evidence of localized immune response or increased inflammation compared to controls. The material was stable to 6 weeks, with an aggregate elastic modulus calculated at ∼470 kPa when tested under confined compression. Further studies are required to assess material degradation over time and long-term replacement with repair tissue.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call