Abstract

Diffusion tensor imaging enables in vivo investigation of tissue cytoarchitecture through parameter contrasts sensitive to water diffusion barriers at the micrometer level. Parameters are derived through an estimation process that is susceptible to noise and artifacts. Estimated parameters (e.g., fractional anisotropy) exhibit both variability and bias relative to the true parameter value estimated from a hypothetical noise-free acquisition. Herein, we present the use of the simulation and extrapolation (SIMEX) approach for post hoc assessment of bias in a massively univariate imaging setting and evaluate the potential of a SIMEX-based bias correction. Using simulated data with known truth models, spatially varying fractional anisotropy bias error maps are evaluated on two independent and highly differentiated case studies. The stability of SIMEX and its distributional properties are further evaluated on 42 empirical diffusion tensor imaging datasets. Using gradient subsampling, an empirical experiment with a known true outcome is designed and SIMEX performance is compared to the original estimator. With this approach, we find SIMEX bias estimates to be highly accurate offering significant reductions in parameter bias for individual datasets and greater accuracy in averaged population-based estimates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.