Abstract

Abstract Climate scenarios make implicit or explicit assumptions about the extrapolation of climate model biases from current to future time periods. Such assumptions are inevitable because of the lack of future observations. This manuscript reviews different bias assumptions found in the literature and provides measures to assess their validity. The authors explicitly separate climate change from multidecadal variability to systematically analyze climate model biases in seasonal and regional surface temperature averages, using global and regional climate models (GCMs and RCMs) from the Ensemble-Based Predictions of Climate Changes and Their Impacts (ENSEMBLES) project over Europe. For centennial time scales, it is found that a linear bias extrapolation for GCMs is best supported by the analysis: that is, it is generally not correct to assume that model biases are independent of the climate state. Results also show that RCMs behave markedly differently when forced with different drivers. RCM and GCM biases are not additive, and there is a significant interaction component in the bias of the RCM–GCM model chain that depends on both the RCM and GCM considered. This result questions previous studies that deduce biases (and ultimately projections) in RCM–GCM combinations from reanalysis-driven simulations. The authors suggest that the aforementioned interaction component derives from the refined RCM representation of dynamical and physical processes in the lower troposphere, which may nonlinearly depend upon the larger-scale circulation stemming from the driving GCM. The authors’ analyses also show that RCMs provide added value and that the combined RCM–GCM approach yields, in general, smaller biases in seasonal surface temperature and interannual variability, particularly in summer and even for spatial scales that are, in principle, well resolved by the GCMs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.