Abstract

CERN’s North Area comprises several target and experimental systems and is a zone of interest for future development. Provision of beam to this area relies upon several beam-intercepting devices located in various branched transfer lines from the Super Proton Synchrotron. In several lines, these include a primary production target system of beryllium plates followed by a combined collimation, attenuation and dump device made from a set of aluminum, copper and iron blocks and known as a ‘TAX’ (Target Attenuator [for] eXperimental areas). These may operate in a range of configurations depending on experimental needs. Future operational regimes with higher beam intensities (increased from a current specification of 1.5× 1013 to 4.0× 1013 p +/pulse), shorter pulse times (4.8 s reduced to 1.2 s), greater repetition rates (14.4 s cycle time reduced to 7.2 s) and ten times the annual intensity place more stringent thermo-structural demands on these existing devices, beyond their original specification. This contribution outlines the engineering analysis, including beam-matter interaction studies and thermo-structural simulations, carried out to assess their robustness under such conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call