Abstract

Banknotes are commonly subjected to chemical analysis in forensic laboratories in the search for post-explosion residues. This matrix presents unique challenges due to the potential presence of target analytes resulting from everyday use, as well as the lack of control samples for comparison. In addition to their relevance in attacks against Automated Teller Machines (ATMs), banknotes are of significant interest when confiscated from suspicious individuals, vehicles, and locations, as they can provide valuable evidence in establishing a connection to this type of crime scene. In such cases, the absence of bulk particles, alternative materials, and control samples is common. This study employed ion chromatography to analyze uncirculated, circulated, and seized banknotes, aiming to determine their ionic profiles. This investigation provides insights into the background levels of target ions in banknotes and aids in the analysis of post-explosion residues. A simple, fast, and precise extraction method was proposed, yielding RSD values below 10% for most analytes in uncirculated banknotes. The study revealed the presence of various ions of interest, some in significant concentrations, even in uncirculated banknotes. PCA analysis demonstrated a clear separation of uncirculated notes based on their banknote value. However, this clustering behavior was not observed in circulated banknotes due to natural variations in analyte concentrations. Interestingly, when uncirculated, circulated, and seized R$ 100 banknotes were analyzed together, the seized samples from an ATM robbery showed a distinct separation from the other groups, indicating the potential for developing classification models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call