Abstract
Sensory loss and weakness in Charcot–Marie–Tooth (CMT) neuropathy is due to axonal loss. However, the pattern and degree of axonal loss cannot be accurately determined from routine electrodiagnostic or strength testing due to collateral reinnervation. We sought to quantify axonal loss in two upper extremity muscles in CMT1A and CMT2 subjects using the electrophysiologic endpoint measure of motor unit number estimation (MUNE). Hypothenar and biceps–brachialis muscle groups were studied in 9 CMT1A, 9 CMT2, and 10 control subjects. The spike-triggered averaging (STA) technique was used to collect surface motor unit potentials for MUNE calculations, and a needle electrode was used to collect corresponding intramuscular data. Maximal voluntary hypothenar and handgrip strength was measured quantitatively, while biceps–brachialis strength was measured qualitatively. Compared to normal subjects, CMT1A and CMT2 subjects had significantly lower MUNE values in hypothenar muscles. Biceps–brachialis MUNE values were reduced in CMT2 but not in CMT1A subjects. In support of proximal axonal loss in CMT2 subjects, surface motor unit and intramuscular potential amplitudes were higher in biceps–brachialis muscles compared to controls. Correlations between quantitative strength and MUNE were significant for hypothenar but not for grip muscle groups. Axonal loss is demonstrated in distal muscles in CMT1A and CMT2 supporting a length-dependent axonopathy. Despite clinical findings of normal or near-normal strength and small reductions in compound muscle action potential (CMAP) amplitude, MUNE values were significantly lower in CMT2 subjects in proximal muscles, consistent with more diffuse denervation. These data indicate that subclinical axonal loss is present that cannot be appreciated using clinical examination or routine electrodiagnostic techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.