Abstract
The utilization of nanopore technologies for the detection of organic biogenic compounds has garnered significant focus in recent years. Oxford Nanopore Technologies' (ONT) MinION instrument, which can detect and sequence nucleic acids (NAs), is one such example. These technologies have much promise for unambiguous life detection but require significant development in terms of methods for extraction and preparation of NAs for biosignature detection and their feasibility for use in astrobiology-focused field missions. In this study, we tested pre-existing, automated, or semiautomated NA extraction technologies, coupled with automated ONT VolTRAX NA sample preparation, and verification with Nanopore MinION sequencing. All of the extraction systems tested (SuperFastPrep2, ClaremontX1, and SOLID-Sample Preparation Unit) showed potential for extracting DNA from Canadian High Arctic environments analogous to Mars, Europa, and Enceladus, which could subsequently be detected and sequenced with the MinION. However, they differed with regard to efficacy, yield, purity, and sequencing and annotation quality. Overall, bead beating-based systems performed the best for these parameters. In addition, we showed that the MinION could sequence unpurified DNA contained in crude cell lysates. This is valuable from an astrobiology perspective because purification steps are time-consuming and complicate the requirements for an automated extraction and life detection system. Our results indicate that semiautomated NA extraction and preparation technologies hold much promise, and with increased optimization and automation could be coupled to a larger platform incorporating nanopore detection and sequencing of NAs for life detection applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.