Abstract

This work evaluated the physicochemical properties and antioxidant activity of spray dried extracts (SDE) from Psidium guajava L. leaves. Different drying carriers, namely, maltodextrin, colloidal silicon dioxide, Arabic gum, and β-cyclodextrin at concentrations of 40 and 80% relative to solids content, were added to drying composition. SDE were characterized through determination of the total phenolic, tannins, and flavonoid content. Antioxidant potential of the SDE was assessed by two assays: cellular test that measures the luminol-enhanced chemiluminescence (LumCL) produced by neutrophils stimulated with phorbol myristate acetate (PMA) and the DPPH radical scavenging (DPPH∗ method). In both assays the antioxidant activity of the SDE occurred in a concentration-dependent manner and showed no toxicity to the cells. Using the CLlum method, the IC50 ranged from 5.42 to 6.50 µg/mL. The IC50 of the SDE ranged from 7.96 to 8.11 µg/mL using the DPPH• method. Psidium guajava SDE presented significant antioxidant activity; thus they show high potential as an active phytopharmaceutical ingredient. Our findings in human neutrophils are pharmacologically relevant since they indicate that P. guajava SDE is a potential antioxidant and anti-inflammatory agent in human cells.

Highlights

  • There is a growing interest in herbal products with antioxidant properties, which have the potential to protect the body against free radical damage and degenerative diseases

  • The extractive solution and concentrated extracts were analyzed for solids (Cs), density (ρ), pH, alcohol content, total flavonoids (TF), total polyphenols (TP) and total tannins (TT) contents, and antioxidant using the DPPH∙ method (Table 3)

  • The experimental results of product recovery are consistent with the ones reported by Tonon et al [27], which shows R between 34 and 55%, when maltodextrin was used as drying carrier

Read more

Summary

Introduction

There is a growing interest in herbal products with antioxidant properties, which have the potential to protect the body against free radical damage and degenerative diseases. Several studies have been conducted to find new sources of compounds capable to inactivate free radicals generated by metabolic pathways in human tissues and cells, produced mainly by human neutrophils [1]. Standardized plant preparations are generally administered in the form of liquid extracts, viscous products, and powders resulting from the drying and comminuting of plant material or by drying an extract [3]. Among these options, the tendency in the pharmaceutical industry is to use dry extracts. Transforming a plant extract into dry extract is widely used in developing herbal medicinal products [4]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call