Abstract

The lake ecosystems on the Yunnan-Guizhou Plateau in China have degraded in recent decades under the effects of anthropogenic activities and climate change. The human impact on the oligotrophic Lugu Lake aquatic ecosystem was evaluated using the sediment records of metals, nitrogen isotopes (δ15N) and magnetic susceptibility over the past 200 years. Three periods were identified based on the trace metal and δ15N records. During the first stage (1816–1976 AD), the concentrations of metals, δ15N and magnetic susceptibility were low with small variations. The anthropogenic contributions to the inputs were also small, except for Ni, reflecting minor human activities in the watershed, and no significant change was observed in the sediment record of the diatom assemblage. During the second stage (1976–2001 AD), the concentrations of Zn and δ15N increased, as well as the anthropogenic contribution of Zn. However, no significant change was detected in the anthropogenic sources of the other metals. These results reflect the low-level use of chemical fertilizers. The major shift in the sediment diatom assemblage during this stage was mainly attributed to regional climate change. During the third stage (2001–2010 AD), the concentrations of the sedimentary metals (Ni, Cr, Mn, Cu, Hg and Al) increased rapidly, with the exception of As and Zn, and a similar increasing trend was observed in the changes by anthropogenic sources of Ni, Cr, Mn and Cu. RDA (Redundancy Analysis) and variance partitioning analysis showed that the human impact and climate proxies independently explained 31.59% and 4.26% of the change of diatom community, respectively, and the interaction between climate change and human impact accounted for 18.61% of the change of diatom community. Tourism-dominated human activities, which were reflected in the metals profiles, facilitated the dominance of eutrophic species and reduced that of oligotrophic species. The development of tourism was likely the main driving force for the succession of diatom assemblages in the third stage. In summary, the anthropogenic input of trace metals in Lugu Lake is still at a low level. However, the significant growth trend in metals over the past decade is significantly related to the change in the lake ecosystem. Therefore, the effects of human activities, especially tourism, on the watershed should be controlled for the protection of the oligotrophic Lugu Lake.

Highlights

  • The ecological degradation driven by climate change and human impact has been a hot topic in environmental science in recent decades [1]

  • RDA (Redundancy Analysis) and variance partitioning analysis showed that the human impact and climate proxies independently explained 31.59% and 4.26% of the change of diatom community, respectively, and the interaction between climate change and human impact accounted for 18.61% of the change of diatom community

  • The results indicate that human activities are the main driving force for aquatic ecosystem changes in Lugu Lake, in particular after 2000 AD as reflected by the sediment records of the trace metals

Read more

Summary

Introduction

The ecological degradation driven by climate change and human impact has been a hot topic in environmental science in recent decades [1]. A number of reports have demonstrated the evidence of the impact of climate change or human activities on aquatic ecosystems [1,2]. Since most of the aquatic ecosystems have been affected by both the climate change and human impact simultaneously, it is necessary to identify which stress is the main problem for specific ecosystems during lake management. Literature about the quantitative assessment of the impacts of climate change and human activities on aquatic ecosystems is scarce. Lakes in China are mainly distributed in five regions. Among these regions, the southwestern lake region is located on the Yunnan-Guizhou Plateau, adjacent to the Qinghai-Tibet Plateau, and hosts diverse aquatic ecosystems and abundant biodiversity [3]. The control of the anthropogenic impact in the watershed is vital for the protection of the lake ecosystems in this region [4,6]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.