Abstract
The proliferation of data collected by modern tunnel boring machines presents a substantial opportunity for the application of data-driven anomaly detection (AD) techniques that can adapt dynamically to site specific conditions. Based on jacking forces measured during microtunneling, this paper explores the potential for AD methods to provide a more accurate and robust detection of incipient faults. A selection of the most popular AD methods proposed in the literature, comprising both clustering- and regression-based techniques, are considered for this purpose. The relative merits of each approach is assessed through comparisons to three microtunneling case histories in which anomalous jacking force behavior was encountered. The results highlight an exciting potential for the use of anomaly detection techniques to reduce unplanned downtimes and operation costs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Geotechnical and Geoenvironmental Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.