Abstract

Buildings play significant role in energy consumption and emission production through all phases of life cycle. Over the last decade, the development towards sustainability has become important issue in building design decisions. The relative contribution of embodied impacts of building materials and structures has been recognized as being significant, especially for high energy effective buildings. Life cycle assessment (LCA) belongs to broadly used methodology which helps to make decisions in sustainable building design. The lower structure of buildings consisted of external wall, floor and substructure has by far, the most significant contribution of embodied impacts associated with the construction phase. The goal of this paper is to assess alternative material solutions of lower structure to support decision at the design phase of the project. The solutions are towards reduced embodied environmental impacts and improved energy performance. This study uses life cycle analysis in system boundary from Cradle to Gate and focuses on environmental indicators such as embodied energy and emissions of CO2eq. and SO2eq. The selection and combination of materials influence amount of energy consumption and associated production of emissions during building operation phase. Therefore this study also calculates thermalphysical parameters. Methods of multicriteria decision analysis (MCDA) are used for the interpretation of results of assessments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.