Abstract

The prediction of allergen cross-reactivity is currently largely based on linear sequence data, but will soon include 3D information on homology among surface exposed residues. To evaluate procedures for these predictions, we need ways to quantitatively assess actual cross-reactivity between two allergens. Three parameters are mentioned: 1) the fraction of the epitopes that is cross-reactive; 2) the fraction of IgE that is cross-reactive; 3) the relative affinity of the interaction between IgE and the two allergens. This editorial briefly compares direct binding protocols with the often more appropriate reciprocal inhibition protocols. The latter type of protocol provides information on symmetric versus asymmetric cross-reactivity, and thus on the distinction between complete (= sensitising) allergens versus incomplete, cross-reacting allergens. The need to define the affinity threshold of the assay and a caveat on the use of serum pools are also discussed.

Highlights

  • In a paper recently published in this Journal, the question was raised whether a fungus considered for biological pest control (Beauvaria bassiana) could elicit allergic reactions due to cross-reactive IgE antibodies induced by allergens from known allergenic fungi [1]

  • The tworeactive proteins had the highest sequence homology to known allergens: the enolase was 85% sequence-identical to the Alternaria enolase known as Alt a 6 and the aldehyde dehydrogenase was 71% sequence-identical to the Alternaria dehydrogenase Alt a 10

  • As the authors point out, the number of sera used to test for cross-reactivity was small (N = 20, tested as 10 pools of 2; a caveat on the use of serum pools will be discussed later)

Read more

Summary

Introduction

In a paper recently published in this Journal, the question was raised whether a fungus considered for biological pest control (Beauvaria bassiana) could elicit allergic reactions due to cross-reactive IgE antibodies induced by allergens from known allergenic fungi [1]. Clinical and Molecular Allergy 2007, 5:2 http://www.clinicalmolecularallergy.com/content/5/1/2 tive potential, in case of polyclonal antibodies, is more reliably assessed by inhibition tests than by direct binding tests.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.