Abstract

The capacity of 21 major fields containing more than 95% of the North Slope of Alaska’s oil were investigated for CO2 storage by injecting CO2 as an enhanced oil recovery (EOR) agent. These fields meet the criteria for the application of miscible and immiscible CO2-EOR methods and contain about 40 billion barrels of oil after primary and secondary recovery. Volumetric calculations from this study indicate that these fields have a static storage capacity of 3 billion metric tons of CO2, assuming 100% oil recovery, re-pressurizing the fields to pre-fracturing pressure and applying a 50% capacity reduction to compensate for heterogeneity and for water invasion from the underlying aquifer. A ranking produced from this study, mainly controlled by field size and fracture gradient, identifies Prudhoe, Kuparuk, and West Sak as possessing the largest storage capacities under a 20% safety factor on pressures applied during storage to avoid over-pressurization, fracturing, and gas leakage. Simulation studies were conducted using CO2 Prophet to determine the amount of oil technically recoverable and CO2 gas storage possible during this process. Fields were categorized as miscible, partially miscible, and immiscible based on the miscibility of CO2 with their oil. Seven sample fields were selected across these categories for simulation studies comparing pure CO2 and water-alternating-gas injection. Results showed that the top two fields in each category for recovery and CO2 storage were Alpine and Point McIntyre (miscible), Prudhoe and Kuparuk (partially miscible), and West Sak and Lisburne (immiscible). The study concludes that 5 billion metric tons of CO2 can be stored while recovering 14.2 billion barrels of the remaining oil.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.