Abstract

The surging number of people who abuse drugs has a great impact on healthcare and law enforcement systems. Amnesty bin drug analysis helps monitor the "street drug market" and tailor the harm reduction advice. Therefore, rapid and accurate drug analysis methods are crucial for on-site work. An analytical method for the rapid identification of five commonly detected drugs ((3,4-methylenedioxymethamphetamine (MDMA), cocaine, ketamine, 4-bromo-2,5-dimethoxyphenethylamine, and chloromethcathinone)) at various summer festivals in the U.K. was developed and validated employing a single quadrupole mass spectrometer combined with an atmospheric pressure solids analysis probe (ASAP-MS). The results were confirmed on a benchtop gas chromatography-mass spectrometry instrument and included all samples that challenged the conventional spectroscopic techniques routinely employed on-site. Although the selectivity/specificity step of the validation assessment of the MS system proved a challenge, it still produced 93% (N = 279) and 92.5% (N = 87) correct results when tested on- and off-site, respectively. A few "partly correct" results showed some discrepancies between the results, with the MS-only unit missing some low intensity active ingredients (N-ethylpentylone, MDMA) and cutting agents (caffeine, paracetamol, and benzocaine) or detecting some when not present. The incorrect results were mainly based on library coverage. The study proved that the ASAP-MS instrument can successfully complement the spectroscopic techniques used for qualitative drug analysis on- and off-site. Although the validation testing highlighted some areas for improvement concerning selectivity/specificity for structurally similar compounds, this method has the potential to be used in trend monitoring and harm reduction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.