Abstract

The paper analyzes advantages and drawbacks of the radioisotope thermoelectric generators (RTG) based on application of 238Pu and 232U. Currently, the RTG on 238Pu are widely used for long-term autonomous power supply of spaceships due to the following positive properties of 238Pu: high specific heat generation rate, long half-life, weak emission of neutrons and γ-rays. Isotope 238Pu may be produced by neutron irradiation of 237Np (main component of transuranium radioactive wastes) in nuclear reactors. The paper considers application of 232U for the same purpose because of the following positive properties of 232U: power elevation during initial 10 years of the RTG operation (effect of α and β-emitters in 232U decay chain), long half-life (comparable with 238Pu half-life). Unfortunately, 232U decay chain includes also intense emitters of high-energy γ-rays. As a compromise, a possibility is considered to create the RTG based on mixture of 238Pu with small (below 5%) additive of 232U. Such RTG will be able to keep long-term stable operation at high power level. The following two-step technology is proposed to produce 232U: generation of 231Pa in thorium blanket of hybrid thermonuclear reactors and subsequent neutron irradiation of 231Pa in nuclear reactors till accumulation of significant 232U quantities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call