Abstract

This work presents the evaluation of an innovative system based on vacuum multi-effect membrane distillation modules (V-MEMD) for seawater desalination at pilot scale. This four-effect unit introduces a remarkable modification from previous V-MEMD systems, consisting of the use of the seawater feed flow as cooling in the condenser, rather than a separate circuit. Preheating the feed in the condenser improved heat efficiency (maximum gained output ratio obtained for seawater was 3.2). Maximum distillate fluxes reached 8.5 l h−1 m−2 for hot feed temperature 75 °C and feed flow rate 150 l h−1. Increasing both parameters to raise the productivity was hindered by the inability of the condenser to cope with all the steam generated in previous effects, resulting in overheating and overpressure. Furthermore, a loss of 40% of distillate production was measured due to the increase of seawater cooling temperature by 8 °C along the year. Finally, it was observed that scaling reduced distillate production up to 50%. Acid cleaning successfully removed scaling and restored the performance. Subsequently, the use of an antiscalant as a pre-treatment was sufficient to prevent it.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.