Abstract

BackgroundWheelchair biomechanics research advances accessibility and clinical care for manual wheelchair users. Standardized outcome assessments are vital tools for tracking progress, but there is a strong need for more quantitative methods. A system offering kinematic, quantitative detection, with the ease of use of a standardized outcome assessment, would be optimal for repeated, longitudinal assessment of manual wheelchair users’ therapeutic progress, but has yet to be offered.ResultsThis work evaluates a markerless motion analysis system for manual wheelchair mobility in clinical, community, and home settings. This system includes Microsoft® Kinect® 2.0 sensors, OpenSim musculoskeletal modeling, and an automated detection, processing, and training interface. The system is designed to be cost-effective, easily used by caregivers, and capable of detecting key kinematic metrics involved in manual wheelchair propulsion. The primary technical advancements in this research are the software components necessary to detect and process the upper extremity kinematics during manual wheelchair propulsion, along with integration of the components into a complete system. The study defines and evaluates an adaptable systems methodology for processing kinematic data using motion capture technology and open-source musculoskeletal models to assess wheelchair propulsion pattern and biomechanics, and characterizes its accuracy, sensitivity and repeatability. Inter-trial repeatability of spatiotemporal parameters, joint range of motion, and musculotendon excursion were all found to be significantly correlated (p < 0.05).ConclusionsThe system is recommended for use in clinical settings for frequent wheelchair propulsion assessment, provided the limitations in precision are considered. The motion capture-model software bridge methodology could be applied in the future to any motion-capture system or specific application, broadening access to detailed kinematics while reducing assessment time and cost.

Highlights

  • There are several current methods that have been successfully applied to study certain aspects of wheelchair propulsion outcomes and biomechanics

  • It includes joint range of motion, which is useful in determining which joints are being utilized, and whether the patient is progressing toward a more effective strategy, Propulsion pattern is provided as a qualitative and quantitative metric – useful for assessing changes in response to therapy, and progress toward smoother and more effective propulsion. This monitoring could provide clinicians with quantitative data to indicate whether a patient is stable or deviating from an appropriate pattern during the course of care. This has a potential to be an early indicator of injury risk, as cadence and propulsion pattern were identified as predictors of injury risk in manual wheelchair users with spinal cord injury [13]

  • In terms of manual wheelchair propulsion, the most important movement of the shoulder joint is in flexion, and there is no extreme abduction, so these results suggest that the Kinect is adequate in the ranges of motion applicable to manual wheelchair use

Read more

Summary

Introduction

There are several current methods that have been successfully applied to study certain aspects of wheelchair propulsion outcomes and biomechanics. The spatiotemporal parameters, which can tell the clinician how propulsion speed, cadence, and time change during a patient’s rehabilitation process, indicate efficiency to the clinician It includes joint range of motion, which is useful in determining which joints are being utilized, and whether the patient is progressing toward a more effective strategy, Propulsion pattern is provided as a qualitative (pattern) and quantitative (size of the pattern) metric – useful for assessing changes in response to therapy, and progress toward smoother and more effective propulsion. This monitoring could provide clinicians with quantitative data to indicate whether a patient is stable or deviating from an appropriate pattern during the course of care. A system offering kinematic, quantitative detection, with the ease of use of a standardized outcome assessment, would be optimal for repeated, longitudinal assessment of manual wheelchair users’ therapeutic progress, but has yet to be offered

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call