Abstract

Most grid-connected DC/AC inverters use traditional proportional–integral (PI) controllers in a synchronous frame. In addition to poor disturbance rejection capabilities, these PI controllers also exhibit steady-state errors for sinusoidal reference signals. To address these drawbacks, this article investigates the use of a high-order controller in the stationary frame and then compares it with the standard PI controller. The effectiveness of the high-order controller in the stationary frame has been examined by providing an infinite gain at a resonance frequency. In this work, the design of high-order and PI controllers and tuning instructions are given. Furthermore, both high-order and PI current-controlled two-level and three-level neutral point clamped (NPC) inverters are compared. Various operational conditions are used for the comparison. The high-order controller reduced the total harmonic distortion (THD) of the injected current by 1.15% for the two-level inverter in normal conditions as compared to the PI controller and 0.9% for the three-level NPC inverters. Furthermore, it reduced the THD in balanced abnormal conditions by 0.5% for the two-level inverter and 0.18% for the three-level NPC inverters. However, the dq controller has a lower THD during unbalance and short circuit conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call