Abstract

In the present study, we benchmark computational protocols for predicting Co-59 NMR chemical shift. Quantum mechanical calculations based on density functional theory were used, in conjunction with our NMR-DKH basis sets for all atoms, including Co, which were developed in the present study. The best protocol included the geometry optimization at BLYP/def2-SVP/def2-SVP/IEF-PCM(UFF) and shielding constant calculation at GIAO-LC-ωPBE/NMR-DKH/IEF-PCM(UFF). This computational scheme was applied to a set of 34 Co(III) complexes, in which, Co-59 NMR chemical shift ranges from +1162 ppm to +15,100 ppm, and these were obtained in distinct solvents (water and organic solvents). The resulting mean absolute deviation (MAD), mean relative deviation (MRD), and coefficient of determination (R2) were 158 ppm, 3.0%, and 0.9966, respectively, suggesting an excellent alternative for studying Co-59 NMR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.