Abstract
Purpose In this study, a simulator for training lateral ventricular puncture (LVP) was developed using three-dimensional (3D) printing technology, and its function of improving the skills of LVP in young interns was evaluated. Methods A virtual 3D craniocerebral simulator of a 51-year-old female patient with hydrocephalus was reconstructed with 3D printing technology. The anatomical and practical validity were assessed by all interns on a 13-item Likert scale. The usefulness of this simulator was evaluated once a week by two neurosurgeons, based on the performance of the interns, using the objective structured assessment of technical skills (OSATS) scale. Results The Likert scale showed that all participants agreed with the overall appearance of the simulator. Also, the authenticity of the skull was the best, followed by the lateral ventricles, analog generation system of intraventricular pressure, cerebrum, and the scalp. This simulator could help the participants’ learning about the anatomy of the lateral ventricle, effective training, and repeating the steps of LVP. During training, the interns’ ratio of success in LVP elevated gradually. At each evaluation stage, all mean performance scores for each measure based on the OSATS scale were higher than the previous. Conclusions The 3D printed simulator for LVP training provided both anatomical and practical validity, and enabled young doctors to master the LVP procedures and skills.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.