Abstract
To qualitatively and quantitatively compare synthetic and conventional MRI sequences acquired on a 1.5-T system for patients with multiple sclerosis (MS). Prospective study that involved twenty-seven consecutive relapsing-remitting MS patients scanned on a 1.5-T MRI scanner. The MRI protocol included 2D transverse conventional spin-echo sequences: proton density-weighted (PD), T2-weighted, T2-FLAIR, and T1-weighted. Synthetic images were generated using 2D transverse QRAPMASTER and SyMRI software with the same voxel size, repetition, echo, and inversion times as the conventional sequences. Four raters performed a crosstab qualitative analysis that involved evaluating global image quality, contrast, flow artefacts, and confidence in lesion assessment introducing the concepts of predominance, agreement, and disagreement. A quantitative analysis was also performed and included evaluating the number of lesions (periventricular, juxtacortical, brainstem, and cerebellum) and the contrast-to-noise ratio between regions (CSF, white matter, grey matter, lesions). The global image quality assessment showed predominance for better scores for conventional sequences over synthetic sequences, whereas contrast, confidence in lesion assessment, and flow artefacts showed predominance for agreement between sequences. There was predominance for disagreement between all pairs of raters in most of the evaluated qualitative parameters. Synthetic PD and T2-FLAIR images showed higher contrast-to-noise ratios than the corresponding conventional images for most comparison between regions. There were no significant differences in the number of lesions detected for most of the study regions between conventional and synthetic images. Synthetic MRI can be potentially used as an alternative to conventional brain MRI sequences in the assessment of MS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.