Abstract

Shape memory polymer (SMP) foam is often proposed as the future alternative of coils in aneurysm treatment devices. Present work numerically investigates the unsteady, three-dimensional simulation of blood flow in a cerebral aneurysm filled with SMP foam. Simulations are conducted on patient-specific geometries with realistic blood velocity waveform imposed at the inlet while SMP foam is treated as a porous medium. The present study introduces a "loading risk map" that helps to visualize the hemodynamic effect of foam insertion on the aneurysm sac and neck. The loading risk maps suggest that while the SMP foam subdues the flow and wall shear pulsations in the aneurysm sac, the pressure distribution is minimally affected. The maps suggest that while the downstream lip is the most risk-prone site for both geometries, downstream vascular anatomy significantly influences foam efficiency in reducing pressure and wall shear stress loading.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call