Abstract

The electrostatically embedded many-body method has been very successful for calculating cohesive energies and relative conformational energies of clusters, and here we extend it to calculate bond breaking energies for metal-ligand bonds in inorganic coordination chemistry. We find that, on average, the electrostatically embedded pairwise additive method is able to predict bond energies yielded by conventional full-system calculations done at the same level of theory to within 2.5 kcal/mol and that the electrostatically embedded three-body method consistently yields energies within 1.0 kcal/mol of the full-system calculations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.