Abstract

Optical oxygen sensors were used to ascertain the level of oxygen consumed by individual salad leaves for optimised packaging of ready-to-eat (RTE) Italian salad mixes during refrigerated storage. Seven commonly found leaves in Italian salad mixes were individually assessed for oxygen utilisation in packs. Each leaf showed varying levels of respiration throughout storage. Using the information obtained, an experimental salad mix was formulated (termed Mix 3) which consisted of the four slowest respiring salad leaves—Escarole, Frisee, Red Batavia, Lollo Rosso. Mix 3 was then compared against two commercially available Italian salads; Mix 1 (Escarole, Frisee, Radicchio, Lollo Rosso) and Mix 2 (Cos, Frisee, Radicchio, Lollo Rosso). Optical sensors were used to non-destructively monitor oxygen usage in all mixes throughout storage. In addition to oxygen consumption, all three salad mixes were quality assessed in terms of microbial load and sensorial acceptability. In conclusion, Mix 3 was found to consume the least amount of oxygen over time, had the lowest microbial load and was most sensorially preferred (p < 0.05) in terms of overall appearance and acceptability. This study clearly shows the potential that oxygen sensors possess in terms of assisting in the optimised development of commercial RTE salad products.

Highlights

  • The growth in the ready-to-use vegetable market (~10% p.a) has been largely due to increasing demand consumers for fresh, healthy and convenient foods [1]

  • Consumer demand for freshness and convenience has led to the evolution and increased production of numerous varieties of minimally-processed vegetables presented in a wide range of packaging formats

  • The data generated in this study showed that the amount of O2 required by individual salad leaves to respire adequately over a seven day storage period was far greater than the typical

Read more

Summary

Introduction

The growth in the ready-to-use vegetable market (~10% p.a) has been largely due to increasing demand consumers for fresh, healthy and convenient foods [1]. The most important motivation for purchasing minimally-processed vegetables relates to convenience and speed, especially for consumers who buy these products during their weekend shopping [2]. Consumer demand for freshness and convenience has led to the evolution and increased production of numerous varieties of minimally-processed vegetables presented in a wide range of packaging formats. Vegetables are, in general, highly perishable products that require controlled handling conditions throughout the distribution chain, from producer to consumer, in order to maintain quality and safety and to increase product shelf life [3]. Prepared salads comprised of several different components can present unique challenges through widely varying requirements and respiration rates [4].

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.