Abstract
Mass spectrometry coupled to liquid chromatography is one of the most powerful technologies for proteome quantification in biomedical samples. In peptide-centric workflows, protein mixtures are enzymatically digested to peptides prior their analysis. However, proteome-wide quantification studies rarely identify all potential peptides for any given protein, and targeted proteomics experiments focus on a set of peptides for the proteins of interest. Consequently, proteomics relies on the use of a limited subset of all possible peptides as proxies for protein quantitation. In this work, we evaluated the stability of the human proteotypic peptides during 21 days and trained a deep learning model to predict peptide stability directly from tryptic sequences, which together constitute a resource of broad interest to prioritize and select peptides in proteome quantification experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.