Abstract

Sukinda chromite valley is one of the largest chromite deposits of the country and produces nearly 8% of chromite ore. It greatly contributes towards the economic development but at the same time deteriorates the natural environment. It is generally excavated by opencast mining method. In the Sukinda mining area, around 7.6 million tons of solid waste have been generated in the form of rejected minerals, overburden material/waste rock and sub-grade ore that may be resulting in environmental degradation, mainly causing lowering in the water table vis-a-vis deterioration in surface and ground water quality. The study conducted in and around one of the chromite mine of the valley reveals that the concentration of hexavalent chromium is found in the water samples of ground and surface water, mine effluents and seepage water. Hexavalent Chromium (Cr+6) have been found varying between 0.02 mg/l and 0.12 mg/l in mine effluents and 0.03–0.8 mg/l in shallow hand pumps and 0.05 and 1.22 mg/l in quarry seepage. The concentration of Cr+6 in Damsal nalah, the main surface water source in the area, is found varying between 0.03 mg/l and 0.14 mg/l and a increasing trend, which is in the downstream of mining activities, has been observed. Leachate study clearly shows that the soil lying in the vicinity of mine waste dump shows highest concentration of Cr+6. Contaminant migration in ground water depends upon various geohydrological conditions of the area. The study shows that aquifer resistivity varies between 15 Ωm to 150 Ωm and aquifer depth varies from 4 m to 26 m below ground level. The ground water flow and mass transport models were constructed with the help of geo-hydrological and geophysical informations using Visual Modflow software. Contaminant migration and path lines for 20 years have been predicted in two layers model of ground water. The study provided an insight into the likely migration of contaminant in ground water due to leaching from overburden dump of chromite ore and will be helpful in making strategic planning for limiting the contaminant migration in the ground water regime in and around the mining areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call