Abstract

In traditional band-to-band Auger recombination theory, the low-injection carrier lifetime is an inverse quadratic function of the doping density. However, for doping densities below about 3×1018 cm−3, the low-injection Auger lifetimes measured in the past on silicon were significantly smaller than predicted by this theory. Recently, a new theory has been developed [A. Hangleiter and R. Häcker, Phys. Rev. Lett. 65, 215 (1990)] that attributes these deviations to Coulombic interactions between mobile charge carriers. This theory has been supported experimentally to a high degree of accuracy in n-type silicon; however, no satisfactory support for it has been found in p-type silicon for doping densities below 3×1017 cm−3. In this work, we investigate the most recent lifetime measurements of crystalline silicon and support experimentally the Coulomb-enhanced Auger theory in p-type silicon in the doping range down to 1×1016 cm−3. Based on the experimental data, we present an empirical parameterisation of the low-injection Auger lifetime. This parameterisation is valid in n- and p-type silicon with arbitrary doping concentrations and for temperatures between 70 and 400 K. We implement this parameterisation into a numerical device simulator to demonstrate how the new Auger limit influences the open-circuit voltage capability of silicon solar cells. Further, we briefly discuss why the Auger recombination rates are less enhanced under high-injection conditions than under low-injection conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.