Abstract

BackgroundRecent advances in antibody microarray technology have made it possible to measure the expression of hundreds of proteins simultaneously in a competitive dual-colour approach similar to dual-colour gene expression microarrays. Thus, the established normalisation methods for gene expression microarrays, e.g. loess regression, can in principle be applied to protein microarrays. However, the typical assumptions of such normalisation methods might be violated due to a bias in the selection of the proteins to be measured. Due to high costs and limited availability of high quality antibodies, the current arrays usually focus on a high proportion of regulated targets. Housekeeping features could be used to circumvent this problem, but they are typically underrepresented on protein arrays. Therefore, it might be beneficial to select invariant features among the features already represented on available arrays for normalisation by a dedicated selection algorithm.ResultsWe compare the performance of several normalisation methods that have been established for dual-colour gene expression microarrays. The focus is on an invariant selection algorithm, for which effective improvements are proposed. In a simulation study the performances of the different normalisation methods are compared with respect to their impact on the ability to correctly detect differentially expressed features. Furthermore, we apply the different normalisation methods to a pancreatic cancer data set to assess the impact on the classification power.ConclusionsThe simulation study and the data application demonstrate the superior performance of the improved invariant selection algorithms in comparison to other normalisation methods, especially in situations where the assumptions of the usual global loess normalisation are violated.

Highlights

  • Recent advances in antibody microarray technology have made it possible to measure the expression of hundreds of proteins simultaneously in a competitive dual-colour approach similar to dual-colour gene expression microarrays

  • Simulation setup In the simulation study we focused on situations in which the assumptions of the global loess normalisation are violated, i.e. in situations where a large proportion of proteins is differentially expressed or the distribution of up-and down-regulated proteins is asymmetrical

  • The MA-plot and loess curves for one example simulation are displayed in Figure 1 for the rank-invariant selection algorithm (InvTseng), the modified rank-invariant procedure (InvMod) and the global loess using the rank difference weights (RDWGL) in combination with the unmodified global loess (GL)

Read more

Summary

Introduction

Recent advances in antibody microarray technology have made it possible to measure the expression of hundreds of proteins simultaneously in a competitive dual-colour approach similar to dual-colour gene expression microarrays. While gene expression microarrays are a standard tool in biological and medical research, microarray technologies for measuring protein expression are still in development. Antibody microarrays represent a technology that has potential for the screening of hundreds of protein expressions in parallel on large sample sets from minute sample volumes [1,2,3]. In a so-called sandwich approach the captured proteins are detected by a second set of antibodies specific for all target proteins. Thereby, data are generated in a standard format, which facilitates the use of well-researched data handling, processing and statistical analysis tools of cDNA gene expression data, e.g. the open-source and open-development Bioconductor project [7]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.