Abstract

In ITER, reflection of photons on vacuum vessel will make parasitic signals (stray light) for optical diagnostics. In this study, to estimate and mitigate the effect of the stray light in ITER in a systematic manner, a ray transfer matrix was constructed based on ray tracing calculations for a divertor impurity monitor and charge-exchange recombination spectroscopy (CXRS). It is shown that the allocation of the sources around the strike point and the X-point, where the emission is strong, is important for the model used to build the transfer matrix to effectively mitigate the stray light. The origin of the stray light for the core CXRS is investigated, and a case study to subtract the stray light is shown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.