Abstract

Uncertainty plagues every effort to model subsurface processes and every decision made on the basis of such models. Given this pervasive uncertainty, virtually all practical problems in hydrogeology can be formulated in terms of (ecologic, monetary, health, regulatory, etc.) risk. This review deals with hydrogeologic applications of recent advances in uncertainty quantification, probabilistic risk assessment (PRA), and decision-making under uncertainty. The subjects discussed include probabilistic analyses of exposure pathways, PRAs based on fault tree analyses and other systems-based approaches, PDF (probability density functions) methods for propagating parametric uncertainty through a modeling process, computational tools (e.g., random domain decompositions and transition probability based approaches) for quantification of geologic uncertainty, Bayesian algorithms for quantification of model (structural) uncertainty, and computational methods for decision-making under uncertainty (stochastic optimization and decision theory). The review is concluded with a brief discussion of ways to communicate results of uncertainty quantification and risk assessment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.