Abstract

In the eye, the embryonic hyaloid vessels nourish the developing lens and retina and regress when the retinal vessels develop. Persistent or failed regression of hyaloid vessels can be seen in diseases such as persistent hyperplastic primary vitreous (PHPV), leading to an obstructed light path and impaired visual function. Understanding the mechanisms underlying the hyaloid vessel regression may lead to new molecular insights into the vascular regression process and potential new ways to manage diseases with persistent hyaloid vessels. Here we describe the procedures for imaging hyaloid in live mice with optical coherence tomography (OCT) and fundus fluorescein angiography (FFA) and a detailed technical protocol of isolating and flat-mounting hyaloid ex vivo for quantitative analysis. Low-density lipoprotein receptor-related protein 5 (LRP5) knockout mice were used as an experimental model of persistent hyaloid vessels, to illustrate the techniques. Together, these techniques may facilitate a thorough assessment of hyaloid vessels as an experimental model of vascular regression and studies on the mechanism of persistent hyaloid vessels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.