Abstract

The excessive and uncontrolled application of antibiotics in the fish farming industry, coupled with a lack of health monitoring and medication practices, is a driving force behind the escalating development of antimicrobial resistance. The present study assessed and compared qualitative field diffusion (QFD) and disk diffusion (DD) assays for the detection of antimicrobial residues (ARs) in diverse freshwater aquaculture fish. A total of 380 freshwater aquaculture fish (160 fresh and 180 frozen) samples were systematically collected between January and June 2021 from various retail stores located in Erbil Governorate, Iraq. Based on QFDA results, overall, ARs were detected (52; 15.3%) at a relatively lower frequency with comparatively higher frequency (21; 31.1%) in fresh than (31; 17.2%) frozen fish samples. On the other hand, DDA also revealed a comparable (45; 13.2%) prevalence rate of ARs. However, a low detection was observed more in fresh (17; 10.6%) than frozen (28; 15.6%) fish samples. Moreover, no statistically significant disparity (χ2 = 0.069; p = 0.79) between two assays and types of fish was recorded. In conclusion, the results of the present study showed that detecting a considerable frequency of ARs in these fish samples raises concerns about potential threats to public health. This underscores the necessity for understanding antibiotic application in aquaculture and its potential connection to antibiotic resistance in bacterial pathogens. Such comprehension is pivotal for formulating and implementing effective control and farm management strategies to address this pressing issue.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.