Abstract

The study’s goal is to assess the flexural strength of concrete that includes waste marble powder using machine learning methods, i.e., ANFIS, Support vector machines, and Gaussian processes approaches. Flexural strength has also been studied by using the most reliable approach of sensitivity analysis in order to determine the influential independent variable to predict the dependent variable. The entire dataset consists of 202 observations, of which 120 were experimental and 82 were readings from previous research projects. The dataset was then arbitrarily split into two subsets, referred to as the training dataset and the testing dataset, each of which contained a weighted percentage of the total observations (70–30). Output was concrete mix flexural strength, whereas inputs comprised cement, fine and coarse aggregates, water, waste marble powder, and curing days. Using statistical criteria, an evaluation of the efficacy of the approaches was carried out. In comparison to other algorithms, the results demonstrate that the Gaussian process technique has a lower error bandwidth, which contributes to its superior performance. The Gaussian process is capable of producing more accurate predictions of the results of an experiment due to the fact that it has a higher coefficient of correlation (0.7476), a lower mean absolute error value (1.0884), and a smaller root mean square error value (1.5621). The number of curing days was identified as a significant predictor, in addition to a number of other factors, by sensitivity analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call