Abstract

Stability during walking is considered a crucial aspect of assessing gait ability. The current study aimed to assess walking stability by applying principal component analysis (PCA) to decompose three-dimensional (3D) whole-body kinematic data of 104 healthy young adults (21.9 ± 3.5 years, 54 females) derived from a depth-sensing camera into a set of movement components/synergies called “principal movements” (PMs), forming together to achieve the task goal. The effect of sex as the focus area was tested on three PCA-based variables computed for each PM: the relative explained variance (rVAR) as a measure of the composition of movement structures; the largest Lyapunov exponent (LyE) as a measure of variability; and the number of zero-crossings (N) as a measure of the tightness of neuromuscular control. The results show that the sex effects appear in the specific PMs. Specifically, in PM1, resembling the swing-phase movement, females have greater LyE (p = 0.013) and N (p = 0.017) values than males. Moreover, in PM3, representing the mid-stance-phase movement, females have smaller rVAR (p = 0.020) but greater N (p = 0.008) values than males. These empirical findings suggest that the inherent sex differences in walking stability should be considered in assessing and training locomotion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.