Abstract

Recent work in the assessment of risk in maritime transportation systems has used simulation-based probabilistic risk assessment techniques. In the Prince William Sound and Washington State Ferries risk assessments, the studies' recommendations were backed up by estimates of their impact made using such techniques and all recommendations were implemented. However, the level of uncertainty about these estimates was not available, leaving the decisionmakers unsure whether the evidence was sufficient to assess specific risks and benefits. The first step toward assessing the impact of uncertainty in maritime risk assessments is to model the uncertainty in the simulation models used. In this article, a study of the impact of proposed ferry service expansions in San Francisco Bay is used as a case study to demonstrate the use of Bayesian simulation techniques to propagate uncertainty throughout the analysis. The conclusions drawn in the original study are shown, in this case, to be robust to the inherent uncertainties. The main intellectual merit of this work is the development of Bayesian simulation technique to model uncertainty in the assessment of maritime risk. However, Bayesian simulations have been implemented only as theoretical demonstrations. Their use in a large, complex system may be considered state of the art in the field of computational sciences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.