Abstract

Digital elevation data are the most frequently used for computer-based terrain analysis and they form an integral part of today’s GIS data analysis capability. For most GIS-based environmental studies, primary topographic parameters such as slope, aspect, and drainage network are often required for specific environmental models. While derived from digital elevation data, particularly the grid-based Digital Elevation Models (DEM), the parameters often display noticeable uncertainties due to errors (a) in the data, (b) inherent to the data structure, and (c) created by algorithms that derive the parameters from the DEM. Some contradictory results have been reported in evaluating the results of various terrain analysis algorithms, largely because of the variety in the assessment methodologies and the difficulties in separating errors in data from those generated by the algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.